Twisted-Pair-Verkabelung
Grundlegendes
2 / 1
Netzplanung
Strukturen:

 

Derzeit rüsten viele Unternehmen ihr Ethernet um. Der erste und meist teuerste Schritt auf diesem Weg ist die Neuverkabelung mit Twisted-Pair-Leitungen. Danach können weitere Maßnahmen ergriffen werden. Die klassische Maßnahme, das 'Bridging', wurde in Koax-Netzen häufig eingesetzt und lebt heute in den sogenannten 'Switches' weiter. Das Aufteilen eines Netzes in mehrere Teilnetze, auch 'Collision Domains' genannt, läßt nicht mehr jedes Datenpaket zu jeder Station gelangen; es können so viele Transaktionen gleichzeitig stattfinden, wie Collision Domains im Netz vorhanden sind - im Extremfall (Switch) ist jeder Hub-Anschluß einer eigenen Collision Domain zugeordnet. An die Switch-Anschlüsse können in der Regel wieder gewöhnliche Repeating Hubs angeschlossen werden; Switching kann so nach und nach im Netz eingeführt werden, um die Collision Domains immer weiter zu verkleinern - bis im Idealfall jedem Rechner ein privates Segment zur Verfügung steht.
Switches sind heute nicht teuerer als Hubs, daher spricht alles für eine Strukturierung des Netzes mit Switches. In einem Peer-to-Peer-Netz (z. B. Unix oder auch Windows ab 95) ohne zentrale Server genügt meistens ein reiner 10BaseT-Switch. Gibt es einige, wenige Server, so kann der Server über mehrere Ethernet-Segmente parallel mit dem Switch verbunden werden, so daß der Datenverkehr zwischen Server und Netz gebündelt wird. Es gibt auch Switches mit einem oder mehreren 100-MBit-Anschlüssen. Diese können an den oder die Server angeschlossen werden, um alle Anwender im Netz deutlich schneller mit Daten zu versorgen - ohne daß deren LAN-Adapter auch nur berührt werden müßten
Da Twisted-Pair-Kabel heutzutage den Standard darstellen, sollte man auf jeden Fall bei der Neuverkabelung gleich Cat-5-Kabel verwenden, um für die Datenrate von 100 MHz gerüstet zu sein. Leider ist der verwendete RJ45-Stecker relativ filigran. Neben der Zerbrechlichkeit der Stecker kommt es bei Hochgeschwindigkeitsnetzen zu Problemen: Die Drähte und Kontakte werden über eine kleine Strecke parallel geführt, wodurch die Wirkung der Twisted-Pair-Kabel aufgehoben wird. Ein weiterer Kritikpunkt an der RJ45-Technik ist die Einheitlichkeit der Dosen. Der Anwender am Arbeitsplatz kann nicht erkennen, welchem Dienst die Dose zugeordnet ist (Netz, analogens Telefon, ISDN, etc.). Selbst Farbkennzeichnung oder Beschriftung hindert viele Leute nicht daran, 'es mal an der anderen Dose zu versuchen'. Und da kann die Rufspannung analoger Telefone schon einmal einen Netzwerkadapter 'killen'.
10 MBit/s (IEEE 802.3) und 100 MBit/s (IEEE 802.3u) verwenden eine Halbduplex-Übertragung über zwei Aderpaare. Bei einer Migration von 10 auf 100 MBit/s bleibt zumindest die Infrastruktur des Kabelnetzes bestehen. Demgegenüber setzt Gigabit-Ethernet (IEEE 802.3ab) auf eine Vollduplex-Übertragung über alle vier Paare. Zwar ermöglicht diese Technik die Verwendung der eigentlich nur bis 100 MHz spezifizierten CAT-5-Kabel, dazu müssen die Komponenten allerdings anders beschaltet werden.
Strukturen der Gebäudeverkabelung
Früher war eine "Bedarfsverkabelung" üblich. Die Netztechnik bestimmte die Art der Verkabelung (Ethernet: busförmige Koaxverkabelung, FDDI: ringförmig mit Lichtwellenleitern). Die Standorte der Rechner und Terminals bestimmte die Netzausdehnung
Heute gilt ganz klar die Prämisse: strukturierte Verkabelung. Die Netztechnik hat sich an eine genormte Verkabelung anzupassen. Jeder Arbeitsplatz bekommt automatisch eine Datennetzdose. Das bringt anfangs zwar höhere Investitionskosten, ist aber zukunftssicher. Fehler wirken sich nur lokal aus, denn jeder Anschluß hat sein eigenes Kabel.
Basis der heutigen Gebäudeverkabelung von Netzen sind die in den letzten Jahren erarbeiteten Normen auf diesem Gebiet. Dabei gibt es im wesentlichen drei grundlegende Normen, die für bestimmte geographische Regionen von Bedeutung sind:
EN 50173 (1995): Informationstechnik: Anwendungsneutrale Verkabelungssysteme
ISO/IEC 11801 (1995): Generic cabling for customer premises
EIA/TIA 568 A/B (1994): Commercial building telecommunications cabling standard
Die EN 50173 und die ISO/IEC 11801 haben im wesentlichen den gleichen Inhalt und enthalten auch die gleichen Anforderungen an die Kabel und Komponenten.
Die EN 50173 ist eine europäische Norm, während die ISO/IEC 11801 weltweit verwendet wird. Die EIA/TIA-568 A/B wurde speziell für den nordamerikanischen Markt von der dortigen Telekommunikationsindustrie entwickelt. Sie ist eigentliche keine Norm, sondern lediglich eine Industrie-Spezifikation. Sie enthält auch geringere Anforderungen bezüglich der Übertragungseigenschaften der Kabel als die anderen Bestimmungen. In der EN 50173 wird ebenso wie in der ISO/IEC 11801 die Gebäudeverkabelung in vier Bereiche eingeteilt:
den Primär- oder Campusbereich für die Verbindung der Gebäude eines Standortes untereinander,
den Sekundär- oder Steigbereich für die Verbindung der einzelnen Etagen eines Gebäudes,
den Tertiär- oder Horizontalbereich für die Verbindung der Anschlußeinheiten wie die Wanddose mit dem Etagenverteiler und
den Arbeitsplatzbereich für den Anschluß der Endgeräte an die Anschlußeinheiten.

 In allen drei Bereichen der Inhouse-Verkabelung (oft auch Ebenen genannt) können sowohl Verkabelungen mit symmetrischen Kupferkabel (Twisted Pair) und -komponenten als auch mit Lichtwellenleiterkabel und -komponenten verwendet werden. Im Campusbereich werden ausschließlich LWL-Kabel und -Komponenten verwendet.

 

 

Campusverkabelung und Steigbereich
Auf Grund der größeren Übertragungsstrecken und dem steigenden Datenaufkommen hat sich sowohl für den Campus- als auch für den Steigbereich die Lichtwellenleiterverkabelung durchgesetzt. Im Außenbereich werden LWL-Außenkabel mit Multimodefasern verwendet. Sollten Kabellängen von größer 2000 m notwendig sein oder extrem hohe Datenraten anfallen, können ebenso Kabel mit Singlemodefasern verwendet werden. Die Faseranzahl sollte in jedem Fall so bemessen sein, daß zukünftiges Wachstum der Netzanforderungen erfüllt werden kann. Als Faustregel sollte man 50% Reserve zum derzeitigen Bedarf addieren. Werden also derzeit acht Fasern benötigt, sollte ein Kabel mit zwölf Fasern verwendet werden.
Im Steigbereich werden meist LWL-Innenkabel, ebenfalls mit Multimodefasern, eingesetzt. Dabei empfiehlt die EN 50173 die Verwendung von 62,5-Mikrometer-Multimodefasern. Multimodefasern mit 50 Mikrometern sind aber ebenfalls zugelassen. Sind die Entfernungen klein (< 100 m) und die zu erwartenden Datenraten pro Teilnehmer gering (< 10 Mb/s), so kann im Steigbereich auch eine Verkabelung mit symmetrischen Kupferkabeln vorkommen. Dabei sollte aber ein qualitativ hochwertiges System eingesetzt werden, da ein Ausfall oder eine Überlastung in diesem Bereich schwerwiegende Konsequenzen für das ganze Netz hat.

Horizontalverkabelung und Arbeitsplatzbereich
Im Horizontalbereich und für die Arbeitsplatzverkabelung werden zumeist hochwertige, geschirmte symmetrische Kupferkabel und -komponenten eingesetzt, da hier der Anschluß an viele einzelne Schnittstellen vorgenommen wird. Wird auch im Horizontal- und Arbeitsplatzbereich mit Lichtwellenleitern (LWL) verkabelt, stehen damit höhere Bandbreiten zur Verfügung und es lassen sich längere Strecken realisieren. LWL-Verkabelung kann auch dann sinnvoll sein, wenn man einfach die EMV-Immunität und die Übertragungssicherheit ausnutzen will. Die Einführung von "Fiber-to-the-desk", der LWL-Verkabelung bis zum Arbeitsplatz, ist wohl bald Realität. Es ist auch möglich, beispielsweise den Steig- und den Horizontalbereich durchgehend mit LWL zu verkabeln, um damit Etagenverteiler einzusparen. Man spricht dann von einer zentralisierten Verkabelung.

 
Netzstrukturen
Die heutige Verkabelung wird im allgemeinen hierarchisch in einem physikalischen Stern aufgebaut. Der Standortverteiler (auch: Hauptverteiler) als zentrale Schaltstelle ist mit den Gebäudeverteilern in den einzelnen Gebäuden sternförmig verkabelt. In den Gebäuden werden die Etagen- verteiler ebenfalls sternförmig mit dem Gebäudeverteiler verkabelt. In der Horizontalebene schließlich findet eine ebenfalls sternförmige Verkabelung der Anschlußeinheiten wie der Wanddose mit dem Etagenverteiler statt. Als Verteiler zum Abschluß der Kabel werden Schränke und Gestelle in 19"-Technik eingesetzt. 19"-Einschübe übernehmen in diesen Schränken die Kabelbefestigung, die Speicherung einer Reservelänge, die Unterbringung von Spleißkassetten (falls verwendet) und das Montieren der Stecker und Kupplungen bzw. Buchsen auf den Verteilerfeldern. Werden nur kleinere Faserzahlen benötigt, so können statt der 19"-Schränke die kompakteren Wandverteiler eingesetzt werden.

 

Im Tertiärbereich werden zum Kabelabschluß Wand- und Bodentankdosen verwendet. Diese Anschlußeinheiten übernehmen hier die Kabelbefestigung, die Speicherung der Reservelänge und das Montieren der Buchsen bzw. Stecker und Kupplungen. Sie bilden den Abschluß der diensteunabhängigen Verkabelung. Das Endgerät (der PC, die Workstation, der Drucker, das Telefon, etc.) wird mit konfektionierten Kabeln an die Wanddose oder den Bodentank angeschlossen. Die Verteilung der Switch- oder Routerports auf die Endgerätedosen erfolgt über ein Patchfeld. Es handelt sich dabei um ein Feld mit Netzwerk-Steckdosen (z. B. RJ-45-Dosen), an welche die Kabel zu den Anschlußdosen in den einzelnen Rämen angeschlossen sind. Die Verbindung zu den aktiven Komponenten erfolgt dann über kurze Patchkabel.

 

 

Die logische Netzstruktur der Verkabelung hängt davon ab, wie die einzelnen Netzwerkknoten miteinander kommunizieren. Darunter sind die Protokolle, Zugriffsverfahren und Konventionen auf der elektronischen Ebene zu verstehen. Die heute am weitest verbreiteten Standards für solche logischen Netzstrukturen sind:
  • ISDN nach DIN EN 50098 für bis zu 2 Mbit/s in einer sternförmigen Verkabelung
  • Ethernet nach IEEE 802.3 für 10 und 100 MHz Übertragungsbandbreite als logischer Bus
  • Token Ring nach IEEE 802.5 für 4 und 16 Mbit/s als logischer Ring
  • FDDI bzw. TPDDI (PMD) nach ANSI X3T12 für bis zu 100 Mb/s als logischer (Doppel-)Ring
  • ATM definiert im ATM-Forum für bis zu 622 Mbit
Für die Umsetzung von der logischen in die physikalische Netzstruktur haben sich Netzwerkkonzentratoren etabliert. Hier werden alle wichtigen Netzwerkaktivitäten zusammengefaßt, was auch die Verkabelung und die Fehlersuche wesentlich erleichtert. Dadurch ist es möglich, beispielsweise das Ethernet 10/100BaseT-Verfahren als logisches Bussystem in einer sternförmigen Verkabelung zu realisieren.

Zurück